技術文章
Technical articles陶瓷材料因其優異的耐高溫性、耐腐蝕性以及良好的化學穩定性,在機械工程、化學工業、電子通訊以及生物醫療等多個領域獲得了廣泛的應用。然而,傳統的陶瓷加工方法,如注射成型、干壓成型、凝膠注射成型等,對模具的依賴度較高,難以滿足集成化、復雜化和精密化陶瓷制品快速制造的需求。與傳統的陶瓷加工技術相比,陶瓷增材制造技術打破了傳統陶瓷加工過度依賴模具的局限,無需模具即可快速生產出個性化的陶瓷產品,結構設計自由度高,并被認為是構成工業4.0的眾多創新性技術之一。以創為序,開拓無人之境根據Gl...
近年來,隨著全球社會老齡化進程加快和人民生活水平不斷提高,人們對生物醫療產業剛性需求日益增強,尤其在基因編輯、體外合成、腦機接口技術、納米技術等前沿領域渴求重大突破。為了提高疾病鑒別、診斷與治療的精確性,生物醫療技術正逐步趨向精密化、智能化與定制化,對微型精密加工技術的需求也日益急迫。創新突破聚智提能在我國產業升級和新質生產力發展的大背景下,醫療器械被視為國家制造業和高科技發展水平的重要標志之一,各大生產商也在快速有效地開發醫療器械產品集群,力求最大限度惠及患者。3D打印技術...
通過先進制造技術構建具有周期性規則特征的微點陣結構,可以與各類材料相結合形成力學超材料,從而實現傳統塊體材料難以達到的非凡性能。例如,在需要大變形和能量吸收的應用中,已廣泛采用由復合材料或金屬構成的點陣超材料;而由碳或陶瓷所構成的點陣超材料,則主要因其低密度和高比強度而受到關注。然而,當前已有的各類力學超材料無法同時滿足透明度及其他光學特性要求,這嚴重制約了其在非平面電子屏幕或異形結構玻璃等特定領域中的應用需求。有鑒于此,香港大學機械工程系陸洋教授課題組在近期與香港理工大學溫...
作為美國的重要戰略布局科研機構,坐落在斯坦福大學中的SLAC國家加速器實驗室專門從事粒子加速器的設計與建造以及高速粒子的研究工作,并在這一專業領域取得了巨大成就,其中包括三項榮獲諾貝爾獎的重要發現。SLAC實驗室在化學、材料學、能源科學、生物科學、聚變能源科學、高能物理和宇宙學等多個前沿科學領域均有所貢獻。其中,正交模耦合器(Ortho-ModeTransducer)是天線系統中的關鍵組件,用于分離和混合兩個相互正交的極化波,能夠將輸入信號分離成兩個正交極化方向的信號,并將它...
光聲成像(PhotoacousticImaging,PA)是一種新興的生物醫學成像技術,它結合了光學成像的高空間分辨率與超聲成像的深組織穿透能力,能夠提供高對比度的組織成像。這種技術依賴于光聲效應,即生物組織吸收脈沖激光后產生的瞬時局部加熱,進而引發超聲波的產生,通過探測這些超聲波,可以構建組織內部的高分辨率圖像。光聲成像因其非侵入性、高靈敏度和深層組織成像能力,已經在腫瘤檢測、血氧水平監測、腦功能成像等多個領域顯示出巨大的應用潛力。然而,光聲成像的效能在很大程度上依賴于造影...
德國歷史最悠久的高等學府——海德堡大學,作為歐洲科研項目最密集的機構之一,在2022年時設立了分子系統工程與先進材料研究所(IMSEAM)。為了給繁多的科研項目提供了堅實的后盾,IMSEAM選擇了摩方精密的面投影微立體光刻(PµSL)3D打印技術,進一步確保了微孔板、微流控裝置以及器官芯片等高精度微型部件的精準制造。通過PµSL技術的應用,顯著提高了研究流程的效率和科研成果的整體質量。這一技術的集成,為IMSEAM的科學探索之路開啟了新的篇章,實現了科...
面向6G技術的高靈敏度多功能太赫茲傳感器,在超高速低時延空間通信、人工智能、智慧城市的通感一體化平臺等多個關鍵領域,展現出其重要性和日益增長的市場需求。開展具有可調控增益的高效多頻探測技術,不僅對提升6G頻譜效率具有重要科學意義,同時也為智慧城市的建設提供了強大的技術支撐,推動城市向更智能、更高效、更可持續的方向發展。在此背景下,如何實現室溫下對太赫茲的頻率選擇性探測已經成為6G傳感的關鍵技術和前沿研究熱點之一。然而,受到材料特性和器件加工成本的限制,高精度、低成本、可調控的...
在當今科技信息技術的快速發展背景下,科技正深刻地改變著人們的日常生活和工作模式。3D打印技術的普及和廣泛應用,使其成為社會各領域重要的一部分。不僅限于工業生產和制造,3D打印技術在教育領域也展現出其優勢,以其高精度、高效率和高質量的特點,為高等教育和科研機構提供了創新的制造解決方案。迄今為止,摩方精密微納3D打印技術已協助眾多研究機構和高校在包括Science,Nature,AdvancedMaterials在內的頂級學術期刊上發表了眾多學術論文。現在,讓我們深入探討以下四篇...